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INTRODUCTION: 

 

Finite element analysis is widely used in the design and analysis of elastomer components in 

the automotive and aerospace industry. Numerous publications [7-10] addressed the 

applications of FEA and have established the method as a reliable tool to predict stress analysis 

parameters under different loading conditions. In this report we have studied the different 

material models available to simulate elastomer behavior. Nonlinear Finite element code 

Abaqus® was used to develop the 2D Axisymmetric and 3D models. Generalized continuum 

axisymmetric and hexahedral elements were used to model the structures in two and three 

dimensions using these hyperelastic material models. Testing of materials to characterize the 

rubber compounds has been carried out in-house and the material constants have been 

developed using regression analysis based curve-fitting procedure.  

 

MATERIAL TESTING AND CHARACTERIZATION PROCEDURE: 

 

The application of computational mechanics analysis techniques to elastomers presents unique 

challenges in modeling the following characteristics: 

1. The load-deflection behavior of an elastomer is markedly non-linear. 
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2. The recoverable strains can be as high 400 % making it imperative to use the 

large deflection theory. 

3. The stress-strain characteristics are highly dependent on temperature and rate 

effects. 

4. Elastomers are nearly incompressible. 

5. Viscoelastic effects are significant. 

 

Finite element codes like Abaqus® Ansys®, LS-Dyna® and MSC-Marc® generally require the 

input of test data covering the maximum range, which the elastomer product experiences in 

service conditions. Test data from the main principal deformation modes are generally used as 

shown in Figure 1. When designing a product from scratch all the four tests can be used to 

generate the constants for the design but for failure analysis one may not have enough material 

to carry out all the tests.  

Figure 1: AdvanSES Material Characterization Tests 

 

STRAIN ENERGY FUNCTIONS: 
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In the FE analysis of elastomeric materials, the material is characterized by using different 

forms of the strain energy density function. The strain energy density of a solid can be defined 

as the work done per unit volume to deform a material from a stress free reference or original 

state to a final state. The strain energy density functions have been derived using a Statistical 

mechanics, and Continuum mechanics involving Invariant and Stretch based approaches. 

 Statistical Mechanics Approach 

 

The statistical mechanics approach is based on the assumption that the elastomeric 

material is made up of randomly oriented molecular chains. The total end to end length of a 

chain (r) is given by 

P(r) = 
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where n is the number of chains in the link and l is the length of each link. 

The strain energy function is given by. 
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Where µ and m are material constants obtained from the curve-fitting procedure and Jel is the 

elastic volume ratio. 

 

 Invariant Based Continuum Mechanics Approach 

 

The Invariant based continuum mechanics approach is based on the assumption that for 

a isotropic, hyperelastic material the strain energy density function can be defined in terms of 

the Invariants. The three different strain invariants can be defined as 
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A general form of the strain energy density function can be given as 
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With the assumption of material incompressibility, I3=1, the strain energy function is 

dependent on I1 and I2 only. The Mooney-Rivlin form can be derived from Equation 3 above 

as 

W(I1,I2) = C10 (I1-3) + C01 (I2-3)…………………………………………………………(4) 

 

With C01 = 0 the above equation reduces to the Neo-Hookean form. 

 

 Stretch Based Continuum Mechanics Approach 

 

The Stretch based continuum mechanics approach is based on the assumption that the 

strain energy potential can be expressed as a function of the principal stretches rather than the 

invariants. The Stretch based Ogden form of the strain energy function is defined as 
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where µi and i are material parameters and for an incompressible material Di=0.  

 

 The choice of the material model depends heavily on the material and the stretch 

ratios (strains) to which it will be subjected during its service life. As a rule-of-thumb for 

small strains of approximately 100 % or 2, simple models such as Mooney-Rivlin are 

sufficient but for higher strains a higher order material model as the Ogden model may be 

required to successfully simulate the ”upturn” or strengthening that can occur in some 

materials at higher strains. 

 

Figure 2 shows the verification procedure that can be carried out to verify the FEA Model as 

well as the used material model. The procedure also validates the boundary conditions if the 

main deformation mode is simulated on an material testing system (MTS) and results verified 

computationally. Figure 2 shows a bushing on a testing jig, and the plot show the FEA model 

and load vs. displacement results compared to the experimental results. It is generally observed 

that verification procedures work very well for plane strain and axisymmetric cases and the use 

of 3-D modeling in the present procedure provides a more rigorous verification methodology. 
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Figure 2: Product Testing and FEA Model Verification Results 
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ABOUT US: 

 

 

 

Our Material Characterization Services: 

1) Hyperelastic Material Testing for Mooney-Rivlin, Ogden and all other Material Constants. 

2) Hypoelastic Material Testing. 

3) Elasto-Plastic Material Characterization Testing. 

4) Viscoelastic Material Testing for Stress Relaxation and Creep. 
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Arruda-Boyce, Neo-Hookean, Viscoelastic, Planar Shear Tension 


