A wide range of standardized and non-standardized mechanical tests on composite materials are carried out to characterize these materials. These tests include tension, compression, flexure, shear, impact and fatigue. It is also imperative that mechanical testing of composites requires use of material testing systems that are capable of performing tests in load control, displacement control, and strain control. Advanses has the setup for full service composites testing laboratory under one roof.
One of the main challenges in testing these type of anisotripic materials is also the requirement that a wide range of fixtures be developed to provide various ways of testing the materials under different conditions.
Our testing engineers are familiar with international standards and range of regulatory requirements. We reglarly characterize composites as per ISO, and ASTM specifications. Our Composites testing laboratory is accredited for static, dynamic and fatigue tests.
Mechanical Testing & Performance Assessment
Uniaxial Tension Test (Directional) (ASTM D638, ISO 527):
The stress (ζ) in a uniaxial tension testis calculated from;
ζ = Load / Area of the material sample ……………………………………..(1)
The strain(ε) is calculated from; ε = δl (change in length) / l (Initial length) ……………..(2)
The slope of the initial linear portion of the curve (E) is the Young’s modulus and given by; E = (ζ2- ζ1) / (ε2- ε1) ……………………………………..(3)
4 Point Bend Flexure Test (ASTM D6272):
The four-point flexural test provides values for the modulus of elasticity in bending, flexural stress, flexural. This test is very similar to the three-point bending flexural test. The major difference being that with the addition of a fourth nose for load application the portion of the beam between the two loading points is put under maximum stress. In the 3 point bend test only the portion of beam under the loading nose is under stress.
This arrangement helps when testing high stiffness materials like ceramics infused polymers, where the number and severity of flaws under maximum stress is directly related to the flexural strength and crack initiation in the material. Compared to the three-point bending flexural test, there are no shear forces in the four-point bending flexural test in the area between the two loading pins.
Poisson’s Ratio Test as per ASTM D3039:
Poisson’s ratio is one of the most important parameter used for structure design where all dimensional changes resulting from application of force need to be taken into account, specially for 3d printed materials. For this test method, Poisson’s ratio is obtained from strains resulting from uniaxial stress only. ASTM D3039 is primarily used to evaluate the Poison’s ratio. Testing is performed by applying a tensile force to a specimen and measuring various properties of the specimen under stress. Two strain gauges are bonded to the specimen at 0 and 90 degrees to measure the lateral and linear strains. The ratio of the lateral and linear strain provides us with the Poisson’s ratio.
Flatwise Compression Test as per ASTM D695:
The compressive properties of 3d printed materials are important when the product performs under compressive loading conditions. The testing is carried out in the direction normal to the plane of facings as the core would be placed in a structural sandwich construction. The test procedures pertain to compression call for test conditions where the deformation is applied under quasi-static conditions negating the mass and inertia effects.
The test procedures pertaining to compression call for test conditions where the deformation is applied under quasi-static conditions negating the mass and inertia effects.
Modified Compression Test as per Boeing BSS 7260:
Modified ASTM D695 and Boeing BSS 7260 is the testing specification that determines compressive strength and stiffness of polymer matrix composite materials using a loading compression test fixture. This test procedure introduces the compressive force into the specimen through end loading.
Axial Fatigue Test as per ASTM D7791 & D3479:
ASTM D7791 describes the determination of dynamic fatigueproperties of plastics in uniaxial loading conditions. Rigid or semi-rigid plastic samples are loaded intension (Procedure A) and rigid plastic samples are loaded incompression (Procedure B) to determine the effect of processing, surface condition, stress, and such,on the fatigue resistance of plastic and reinforced composite materials subjected to uniaxial stress for a large number of cycles.The results are suitable for study of high load carrying capability of candidate materials. ASTM recommends a test frequency of 5hz or lower.The tests can be carried out under load/stress or displacement/strain control. The test method allows generation of stress or strain as a function of cycles, with the fatigue limit characterized by failure of the specimen or reaching 10E+07 cycles.The maximum and minimum stress or strain levels are defined throughan R ratio.The Composites testing laboratory at AdvanSES is fully accredited for static, dynamic and fatigue tests.
3 Point Bend Flexure Test (ASTM D790):
Three point bending testing is carried out to understand the bending stress, flexural stress and strain of composite and thermoplastic 3d printed materials. The specimen is loaded in a horizontal position, and in such a way that the compressive stress occurs in the upper portion and the tensile stress occurs in the lower portion of the cross section.This is done by having round bars or curved surfaces supporting the specimen from underneath. Round bars or supports with suitable radii are provided so as to have a single point or line of contact with the specimen. The load is applied by the rounded nose on the top surface of the specimen. If the specimen is symmetrical about its cross section the maximum tensile and compressive stresses will be equal. This test fixture and geometry provides loading conditions so that specimen fails in tension or compression.
For most composite materials,the compressive strength is lower than the tensile strength, and the specimen will fail at the compression surface. This compressive failure is associated with the local buckling (micro buckling) of individual fibres.
Advanses has the setup for full service composites testing laboratory under one roof and we are accredited for static, dynamic and fatigue tests