Mechanical Testing of 3D Printed Parts and Materials

A New Approach to Product Development & Rapid Prototyping

The procedure of manufacturing objects by depositing successive layers upon layers of material, based on 3D digital CAD models, is called Additive Manufacturing (AM) or simply 3D-printing. Fused Deposition Modeling (FDM) technology is one of the most widely used technique in additive manufacturing. A range of other manufacturing materials can be used for 3D printing that include nylon, glass-filled polyamide, epoxy resins, wax, and photopolymers. FDM-based polymer product manufacturing has increased in recent times due to the flexibility it offers in the production of polymer and fibre-based composite parts. FDM-based polymers have the potential to be used in all applications, currently they are primarily used in automotive, aerospace and biomedical applications.

Additive Manufacturing involves a series of processes, from ideation and design development to final product manufacturing using a specialized printer. The different steps depend on the type of manufacturing method and the material type. The primary processes and steps involved are however mostly common and remain the same for different types of manufacturing applications. The steps involved in an AM process are as shown below;

3D Printing Process

Fused Deposition Modeling (FDM)

FDM is the method of choice for manufacturing of 3d printed polymer parts and components due to its simple process, low economic cost and predictable material properties. FDM is already used in the material extrusion manufacturing process for various thermoplastic polymers. Some common thermoplastic filaments used in FDM are acrylonitrile butadiene styrene (ABS), polypropylene (PP), polylactide (PLA), polyamides (PA) like Nylon, polyether-ether-ketone (PEEK) etc. The FDM process consists of the polymer being extruded and deposited in a successive layer by layer method. FDM manufactured polymer parts and components exhibit good mechanical properties, surface finish, and manufacturability. The matrix material used in the FDM process is in the form of a 1.75mm to 2.85 mm filament wound on a spool. The filament is fed into the printer head where it is heated and melted above its glass transition temperature (Tg). The plastic melt is then passed to the nozzle and deposited layer by layer.

FDM of Fibre-Reinforced Polymers


The strength of polymeric materials can be significantly improved through reinforcement by fibres. Fibre-reinforced polymers manufactured using 3d printing technique is gaining traction. Fibre-matrix interaction and porosity are important considerations to be addressed in 3d printing of polymeric composites. FDM is currently the most preferred method for the production of polymeric fiber composites due to its material flexibility, and consistent properties.

Although the 3d printing additive manufacturing method is a sophisticated process for producing materials, and readily usable components and parts, the field service material behaviour of these printed parts is highly complicated. These properties are influenced by several process parameters such as filament material, temperature, printing speed. The material behaviour is highly anisotropic and is governed by the microstructure produced while depositing the layers and the ambient environment. The resulting material behaviour can be described using stress–strain relationships and is critical in the Finite element analysis and stress analysis of models. AdvanSES has full capability to test these complex materials and their behaviours using an array ot techniques. Mechanical testing of 3D printed parts and materials is now a key part of our portfolio of services

Mechanical Testing of 3D Printed Parts and Materials generally involves the following tests:

  1. Uniaxial tension tests
  2. Flexure tests
  3. Compression tests
  4. Poisson’s ration tests
  5. Axial Fatigue tests.

Static and Dynamic Testing of Engineering Materials and Products

Testing of materials and products involves mechanical loading of a material specimen or product up to a pre-determined deformation level or up to the point where the sample fails. The material properties backed out from these tests are further used to characterize the materials and products. Testing is carried out under essentially two conditions viz; Static and Dynamic.

 Physical testing of materials as per ASTM D412, ASTM D638, ASTM D624 etc., can be categorized as slow speed tests or static tests. The difference between a static test and dynamic test is not only simply based on the speed of the test but also on other test variables and parameters employed like forcing functions, displacement amplitudes, and strain cycles. The difference is also in the nature of the information we back out from the tests. Static mechanical testing is carried out at lower frequencies, generally less than one Hertz. The associated loads and applied deformation amplitudes are also smaller and the strain rate is much lower as compared to typical engineering applications. Dynamic loading is generally carried out under forcing functions and with high deformation amplitudes. These forcing functions and amplitudes are applied under a very short time period. When related to polymers, composites and elastomers, the information from a conventional test is usually related to quality control aspects of the materials or products, while from dynamic tests we back out data regarding the functional performance of the materials and products. ASTM D5992, D4092 and D5279 are some of the dynamic mechanical testing standards. High speed tensile, compression, impact, fracture tests using Split Hopkinson Pressure bars (SHPB), Servo-Hydraulic testing machines and cyclic fatigue tests fall under the category of dynamic testing.

 Polymer materials are widely used in all kinds of engineering applications because of their superior performance in vibration isolation, impact resistance, rate dependency and time dependent properties. In some traditional applications they have consistently shown better performance combining with other materials like glass fibres etc., and are now replacing metals and ceramics in such applications. The investigations of polymer properties in vibration, shock, impact and other viscoelastic phenomena is now considered critical, and understanding of dynamic mechanical behaviour of polymers becomes necessary and compulsory.

Figure 1: Static and Dynamic Testing Systems at AdvanSES

The absolute values from frequency sweep, strain sweep, temperature sweep dynamic tests are meaningful, but have little utility as isolated data points. They do become valuable data points when compared to each other or some other known variables. A tan delta or damping coefficient value of 0.4 is poor for a natural rubber or EPDM based compound, but very good in FKM materials where the structure of the compound makes it venerable to lower than optimum dynamic properties. Most uncured rubbery compounds start on the viscous side, and as we cure the compound, we shift towards the elastic side.

 The importance of dynamic testing comes from the fact that performance of elastomers and elastomeric products such as engine mounts, suspension bumpers, tire materials etc., cannot be fully predicted by using only traditional methods of static testing. Polymer and elastomer tests like hardness, tensile, compression-set, low temperature brittleness, tear resistance tests, ozone resistance etc., are all essentially quality control tests and do not help us understand the performance or the durability of the material under field service conditions. An elastomer is used in all major applications as a dynamic part being able to provide vibration isolation, sealing, shock resistance, and necessary damping because of its viscoelastic nature. 

Figure 2: Viscoelastic and Dynamic Studies Correlate Molecular Structure to Manufacturing and Mechanical Properties of Engineering Components

As it stands today, the theory of dynamic properties can be applied judiciously to product development, performance characterization or failure analysis problems. The field of application has evolved over time with availability of highly sophisticated instruments. The problems need to be studied upfront for any time or frequency dependent loading conditions and boundary conditions acting on the components and the theory be suitably applied. Needless to say that dynamic properties have utmost importance when polymeric materials and components show heat generation, and fatigue related field failures. Dynamic characterization relates the molecular structure of the polymeric materials to the manufacturing processes and to the field performance of engineering products. Dynamic properties play an important part in comparing mechanical properties of different polymers for quality, performance prediction, failure analysis and new material qualification. Dynamic testing truly helps us to understand and predict these properties both at the material and component level.

Following are the testing modes that can be implemented and the results for materials and components that one may seek from dynamic testing;

Testing Modes

Test Results Data:

1) Storage or Elastic Modulus (E’) versus temperature, frequency, or % strain

2) Loss or Viscous Modulus (E”) versus temperature, frequency, or % strain

3) Damping Coefficient (Tan Delta) versus temperature, frequency, or % strain

4) Stress vs Strain properties at different strain rates.

5) Strain vs Number of Cycles for a material or component under load control fatigue.

6) Load or Stress vs Number of Cycles for a material or component under strain control fatigue.

7) Fatigue crack growth vs Number of Cycles for a material under strain controlled fatigue.

 No single testing technique or methodology provides a complete picture of the material quality or component performance. It is always a combination of testing methods and techniques that have to be applied to obtain a 360 degree view of the material quality and performance.

References:

1) Ferry, Viscoelastic Properties of Polymers, Wiley, 1980.

2) Ward et al., Introduction to Mechanical Properties of Solid Polymers, Wiley, 1993.

3) TA Instruments, Class Notes and Machine Manuals, 2006.

4) Lakes, Roderick., Viscoelastic Materials, Cambridge University Press, 2009.

5) Srinivas, K., and Pannikottu, A., Material Characterization and FEA of a Novel Compression Stress Relaxation Method to Evaluate Materials for Sealing Applications, 28th Annual Dayton-Cincinnati Aerospace Science Symposium, Ohio, March 2003.