Limitations of Hyperelastic Material Models

Limitations of Hyperelastic Material Models

Introduction:

Polymeric rubber components are widely used in automotive, aerospace and biomedical systems in the form of vibration isolators, suspension components, seals, o-rings, gaskets etc. Finite element analysis (FEA) is a common tool used in the design and development of these components and hyperelastic material models are used to describe these polymer materials in the FEA methodology. The quality of the CAE carried out is directly related to the input material property and simulation technology. Nonlinear materials like polymers present a challenge to successfully obtain the required input data and generate the material models for FEA. In this brief article we review the limitations of the hyperleastic material models used in the analysis of polymeric materials.

 Theory:

A material model describing the polymer as isotropic and hyperelastic is generally used and a strain energy density function (W) is used to describe the material behavior. The strain energy density functions are mainly derived using statistical mechanics, and continuum mechanics involving invariant and stretch based approaches.

Statistical Mechanics Approach

The statistical mechanics approach is based on the assumption that the elastomeric material is made up of randomly oriented molecular chains. The total end to end length of a chain (r) is given by

Where µ and lm are material constants obtained from the curve-fitting procedure and Jel is the elastic volume ratio.

Invariant Based Continuum Mechanics Approach

The Invariant based continuum mechanics approach is based on the assumption that for a isotropic, hyperelastic material the strain energy density function can be defined in terms of the Invariants. The three different strain invariants can be defined as

I1 = l12+l22+l32

I2 = l12l22+l22l32+l12l32

I3 = l12l22l32

With the assumption of material incompressibility, I3=1, the strain energy function is dependent on I1 and I2 only. The Mooney-Rivlin form can be derived from Equation 3 above as

W(I1,I2) = C10 (I1-3) + C01 (I23)…………………………………………………………(4)

With C01 = 0 the above equation reduces to the Neo-Hookean form.

Stretch Based Continuum Mechanics Approach

The Stretch based continuum mechanics approach is based on the assumption that the strain energy potential can be expressed as a function of the principal stretches rather than the invariants. The Stretch based Ogden form of the strain energy function is defined as

where µi and αi are material parameters and for an incompressible material Di=0.

Neo-Hookean and Mooney-Rivlin models described above are hyperelastic material models where, the strain energy density function is calculated from the invariants of the left Cauchy-Green deformation tensor, while in the Ogden material model the  strain energy density function is calculated from the principal deformation stretch ratios.

The Neo-Hookean model, one of the earliest material model is based on the statistical thermodynamics approach of cross-linked polymer chains and as can be studied is a first order material model. The first order nature of the material model makes it a lower order predictor of high strain values. It is thus generally accepted that Neo-Hookean material model is not able to accurately predict the deformation characteristics at large strains.

The material constants of Mooney-Rivlin material model are directly related to the shear modulus ‘G’ of a polymer and can be expressed as follows:

G = 2(C10 + C01 ) …………………………….…(6)

Mooney-Rivlin model defined in equation (4) is a 2nd order material model, that makes it a better deformation predictor that the Neo-Hookean material model. The limitations of the Mooney-Rivlin material model makes it usable upto strain levels of about 100-150%.

Ogden model with N=1,2, and 3 constants is the most widely used model for the analysis of suspension components, engine mounts and even in some tire applications. Being of a different formulation that the Neo-Hookean and  Mooney-Rivlin models, the Ogden model is also a higher level material models and makes it suitable for strains of upto 400 %. With the third order constants the use of Ogden model make it highly usable for curve-fitting with the full range of the tensile curve with the typical ‘S’ upturn.

Discussion and Conclusions:

The choice of the material model depends heavily on the material and the stretch ratios (strains) to which it will be subjected during its service life. As a rule-of-thumb for small strains of approximately 100 % or l=2.0, simple models such as Mooney-Rivlin are sufficient but for higher strains a higher order material model as the Ogden model may be required to successfully simulate the ”upturn” or strengthening that can occur in some materials at higher strains.

REFERENCES:

  1. ABAQUS Inc., ABAQUS: Theory and Reference Manuals, ABAQUS Inc., RI, 02
  2. Attard, M.M., Finite Strain: Isotropic Hyperelasticity, International Journal of Solids and Structures, 2003
  1. Bathe, K. J., Finite Element Procedures Prentice-Hall, NJ, 96
  2. Bergstrom, J. S., and Boyce, M. C., Mechanical Behavior of Particle Filled Elastomers,Rubber Chemistry and Technology, Vol. 72, 2000
  3. Beatty, M.F., Topics in Finite Elasticity: Hyperelasticity of Rubber, Elastomers and Biological Tissues with Examples, Applied Mechanics Review, Vol. 40, No. 12, 1987
  4. Bischoff, J. E., Arruda, E. M., and Grosh, K., A New Constitutive Model for the Compressibility of Elastomers at Finite Deformations, Rubber Chemistry and Technology,Vol. 74, 2001
  5. Blatz, P. J., Application of Finite Elasticity Theory to the Behavior of Rubber like Materials, Transactions of the Society of Rheology, Vol. 6, 196
  6. Kim, B., et al., A Comparison Among Neo-Hookean Model, Mooney-Rivlin Model, and Ogden Model for Chloroprene Rubber, International Journal of Precision Engineering & Manufacturing, Vol. 13.
  7. Boyce, M. C., and Arruda, E. M., Constitutive Models of Rubber Elasticity: A Review, Rubber Chemistry and Technology, Vol. 73, 2000.
  8. Srinivas, K., Material Characterization and FEA of a Novel Compression Stress Relaxation Method to Evaluate Materials for Sealing Applications, 28th Annual Dayton-Cincinnati Aerospace Science Symposium, March 2003.
  9. Srinivas, K., Material Characterization and Finite Element Analysis (FEA) of High Performance Tires, Internation Rubber Conference at the India Rubber Expo, 2005.

SERVICE LIFE PREDICTION OF POLYMER RUBBER COMPONENTS USING ACCELERATED AGING AND ARRHENIUS EQUATION

Introduction:

Polymeric rubber components are widely used in automotive, aerospace and biomedical systems in the form of seals, o-rings, gaskets, vibration isolators, suspension components etc. The service life of these systems is governed by the useful life of the polymeric materials used in these different applications. Aerospace and biomedical systems are expected to have service life in decades, while automotive components are expected to fully last the 5 years 100,000 warranted miles. Polymeric rubber components can get degraded when exposed to chemical and environmental degradants like ozone, UV rays, oxygen, thermal cycling, engine oils, water etc., and also due to mechanical service stress and strain conditions. It becomes very important to predict life of polymeric and rubber components under these degrading service environments. The most common approach is to accelerate the ageing of a material using elevated temperature tests combined with an extrapolation technique to predict the life time of the material/product at lower temperatures.

Theory and Technique:

One of the most widely used techniques to predict lifetimes of polymeric materials is the use of Arrhenius equation. The technique utilizes accelerated thermal aging of the materials under controlled conditions. Failure times and degradation rate studies are carried out at elevated temperatures and the data is used to extrapolate material performance to ambient conditions. Arrhenius extrapolations assume that a chemical degradation process is controlled by a reaction rate ‘k’,

k = A  e^{-Ea/(RT)}  OR  ln k = ln A +  {-Ea/(RT)}      ———————————(1)

where Ea is the Arrhenius activation energy, R is the universal gas constant (8.314 J/mol °K), T the absolute temperature and A the pre-exponential factor. A log-plot of degradation times (1/k) versus inverse temperature (1/T in °K) is expected to result in a straight line. The linear interpolations along this line can be used to predict properties to lower temperatures.

To be able to successfully use the Arrhenius equation, accelerated testing must be carried out at a minimum of four temperatures above the product application temperature.  To accurately estimate the degradation rate it is important to use a material property which exhibits sufficient range to assure a reliable and accurate determination of the property during the accelerated aging process.  Properties like tensile modulus, tear strength, stress relaxation modulus can be used to study the accelerated aging process and degradation rates.

Figure 1: Tensile Strength of Material at Various Temperatures and Aging Times

 

The identification of ageing mechanisms and the evaluation of dependence of these mechanisms on the mechanical properties of components is important. To successfully apply life prediction technique using the Arrhenius equation, the predominant degradation process has to systematically identified and an appropriate accelerated aging test to replicate the degradation process has to be carried out. The degradation process and failures of aged laboratory samples needs to be correlated to the components in the field. The accelerated aging temperatures need to be suitably chosen to correlate field degradation rates. Generally, a test time of one decade is equivalent to a temperature rise of 10°C

Figure 2: Arrhenius Plot Showing the Degradation Times and Inverse Temperature

 

Key Assumptions:

In most applications involving temperature acceleration replicating a failure mechanism, a degradation process might involve multiple steps with each of the steps having its own rate constants and activation energy. It is assumed that these phenomena can be approximated over the full temperature range by the Arrhenius equation.  It is also assumed that the chemical degradation process plays  major part in the failure mechanism, if the failure is a stress induced one then the Arrhenius equation method cannot be usefully employed. Method assumes that the chemical deterioration induced in the lab is directly correlated to the service life in the field.

Limitations and Benefits:

Arrhenius extrapolation to predict service life using accelerated aging  and degradation exhibits some limitations and many reports showing that temperature effects on degradation kinetics cannot always be described using the Arrhenius equation have been published. However, Arrhenius extrapolation being easy to perform, reproducible, replicable and practically relevant in large amount of field service applications is widely used for lifetime prediction of polymers in different environments.

 

Conclusions:

Various approaches can be applied to determine life of elastomer components used in engineering applications.  It is imperative to define their failure modes and failure mechanisms and establish verification and correlations between field service conditions and laboratory testing samples. The Arrhenius method provides a quantifiable determination of the service life of elastomer components in engineering applications.

 

References:

  1. Celina, M., Gillen, K.T., Assink, R. K., Accelerated Aging and Lifetime Prediction: Review of Non-Arrhenius Behavior due to Two Competing Processes, Polymer Degradation and Stability, Vol. 90, 2005
  2. Leyden, Jerry., Failure Analysis in Elastomer Technology: Special Topics, Rubber Division, 2003
  3. Roland, C.M., Vagaries of Elastomer Service Life Prediction, Institute of Materials, Minerals and Mining, 2009
  4. Bernstein, and Gillen K.T., Predicting the lifetime of Flurorosilicone O-rings, Polymer Degradation and Stability, 2009
  5. Mott, C. M. Roland, Ageing of Natural Rubber in Air and Seawater, Rubber Chemistry and Technology, 2001
  6. Baranwal, Krishna., Elastomer Technology: Special Topics, Rubber Division, 2003
  7. Srinivas, K., and Pannikottu, A., Material Characterization and FEA of a Novel Compression Stress Relaxation Method to Evaluate Materials for Sealing Applications at the 28th Annual Dayton-Cincinnati Aerospace Science Symposium, March 2003.
  8. Srinivas, K., Systematic Experimental and Computational Mechanics Failure Analysis Methodologies for Polymer Components, ARDL Technical Report, March 2008.
  9. Dowling, N. E., Mechanical Behavior of Materials, Engineering Methods for Deformation, Fracture and Fatigue Prentice-Hall, NJ, 99