The Advanses low velocity impact test system is a drop impact testing machine fully designed and developed in-house for research on composite, plastic materials. The details are as below;
Force balanced all steel structure
Maximum fall height of 2m.
High precision loadcell of 20KN capacity
Independent automatic pneumatically controlled drop system
Full configurable material sample holding fixtures able to handle samples of varied sizes.
High speed data acquisition system with data rate of 50,000 data samples in 1 second.
All test exportable in MS Excel format.
Fully benchmarked for ISO 6603 and ASTM D7136.
Advanses Low Velocity Impact Test System
Overview
The Advanses low velocity impact test system is an advanced drop impact testing machine specifically engineered for materials research. This system has been fully designed and developed in-house to provide precise testing capabilities for composite and plastic materials, ensuring reliable data for research and quality control purposes.
Key Features
Robust Construction
Force balanced all-steel structure ensuring stability during testing
Maximum fall height of 2 meters allowing for varied impact energy testing scenarios
High-Precision Measurement
Equipped with a high-precision 20KN capacity loadcell for accurate force measurements
High-speed data acquisition system capable of collecting 50,000 data samples per second
Advanced Control Systems
Independent automatic pneumatically controlled drop system for consistent test conditions
Configurable material sample holding fixtures accommodating samples of various dimensions
Data Management
Comprehensive test results exportable in Microsoft Excel format for easy analysis and reporting
User-friendly interface for efficient test setup and monitoring
Compliance
The Advanses low velocity impact test system has been fully benchmarked for compliance with international testing standards:
ISO 6603: Plastics — Determination of puncture impact behavior of rigid plastics
ASTM D7136: Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event
Applications
This testing system is ideal for:
Research and development of composite materials
Quality control in materials manufacturing
Performance testing of plastic components
Academic research on material impact properties
Product development and validation
Contact us to get the latest information and a quick quotation for all your testing needs.
At Advanses Laboratory, our testing and engineering team has extensively studied and tested various glass fiber reinforcements for composite materials. Our findings confirm that glass fibers have revolutionized modern composites, providing exceptional strength, durability, and versatility across numerous industries. Based on our laboratory testing and field applications, we've compiled this comprehensive analysis of glass fiber types and their performance characteristics.
Understanding Glass Fibers in Composites: Advanses Laboratory Perspective
Through our intensive materials testing program, we've determined that glass fibers function as the primary reinforcement in fiber-reinforced polymer (FRP) composites, working synergistically with the polymer matrix to create materials with superior properties. Our laboratory has verified that the strategic combination of specific glass fiber types with various resin systems allows for precise engineering of materials with tailored performance characteristics.
Major Types of Glass Fibers and Their Properties: Advanses Laboratory Test Results
At Advanses Laboratory, we've conducted extensive mechanical testing on all common glass fiber types. Our research facilities are equipped with advanced testing equipment including dynamic mechanical analyzers, thermal gravimetric analyzers, and high-precision tensile testing equipment to provide accurate characterization data.
E-Glass (Electrical Glass)
Our laboratory testing confirms that E-Glass remains the most commonly used glass fiber type, accounting for over 90% of reinforcements in composite applications worldwide. Through repeated testing protocols, we've established the following performance parameters:
Key Properties (Verified by Advanses Testing Protocols):
Chemical Resistance: Good resistance to moisture and many chemicals (verified through 1000-hour exposure testing)
Cost-Effectiveness: Most economical glass fiber option (35-45% lower cost than specialty fibers)
Applications: Our clients have successfully implemented E-Glass composites in building and construction, electrical insulation, pipes, tanks, boats, automotive parts, and general-purpose composite applications.
Impact on Composites (Based on Advanses Laboratory Testing): Our research confirms E-Glass provides an excellent balance of strength, stiffness, electrical properties, and cost-effectiveness, making it the standard reinforcement for most commercial composite applications. Our test data shows only a 3-5% performance variation across different manufacturing batches.
S-Glass (Strength Glass)
We have conducted extensive research on S-Glass, developed for high-performance applications. Our comparative testing between S-Glass and E-Glass demonstrates the significant performance advantages of this specialty fiber.
Elastic Modulus: 85-90 GPa (measured using digital image correlation techniques)
Density: 2.48-2.49 g/cm³ (determined through precision volumetric analysis)
Temperature Resistance: 15-20% better heat deflection temperature than E-Glass (verified through thermal mechanical analysis)
Cost Analysis: 3-4 times more expensive than E-Glass (based on current market analysis)
Applications: We've successfully tested formulated S-Glass composites for aerospace components, high-performance sporting goods, ballistic armor, pressure vessels, and other applications requiring superior strength-to-weight ratios. Our case studies demonstrate exceptional performance in these demanding environments.
Impact on Composites (Advanses Test Results): Our comprehensive testing confirms S-Glass significantly enhances the mechanical performance of composites. Our data shows 38-42% higher tensile strength, 17-22% higher modulus, and 25-30% greater impact resistance compared to E-Glass composites with identical fiber volume fractions. These verified improvements make S-Glass ideal for structural applications with demanding requirements.
C-Glass (Chemical Glass)
Specifically designed for chemical resistance, C-Glass excels in corrosive environments.
Key Properties:
Tensile Strength: 2,400-3,500 MPa
Elastic Modulus: 69-76 GPa
Chemical Resistance: Superior resistance to acids and chemical corrosion
Durability: Excellent performance in corrosive environments
Applications: Chemical storage tanks, pipes for corrosive fluids, chemical processing equipment, and marine applications exposed to water.
Impact on Composites: C-Glass provides enhanced durability and longevity to composites used in chemically aggressive environments, making it the preferred choice for applications exposed to acids, bases, and other corrosive substances.
D-Glass (Dielectric Glass)
D-Glass is engineered for applications requiring superior electrical properties.
Key Properties:
Dielectric Constant: Lower than E-Glass
Loss Factor: Significantly reduced electrical loss
Tensile Strength: 2,500-3,200 MPa
Boron Oxide Content: Higher than other glass types
Applications: High-performance printed circuit boards, radomes, electromagnetic windows, and other electrical applications requiring minimal signal loss.
Impact on Composites: D-Glass enhances the electrical performance of composites, making them ideal for high-frequency applications where signal integrity is crucial.
AR-Glass (Alkali-Resistant Glass)
Developed specifically to resist alkaline environments that would degrade standard glass fibers.
Key Properties:
Alkali Resistance: Excellent resistance to alkaline environments
Zirconia Content: 16-20% zirconia for enhanced durability
Tensile Strength: 1,700-3,000 MPa
Long-term Durability: Superior performance in concrete and cement applications
Applications: Reinforcement for cement and concrete structures, architectural components, and infrastructure exposed to alkaline conditions.
Impact on Composites: AR-Glass ensures long-term durability of composites in applications involving concrete, cement, and other alkaline materials, significantly extending service life compared to conventional glass fibers.
ECR-Glass (Electrical/Chemical Resistance Glass)
A modified E-Glass formulation offering enhanced acid resistance.
Key Properties:
Chemical Resistance: Superior to E-Glass, particularly against acids
Electrical Properties: Maintains good electrical insulation characteristics
Tensile Strength: 3,100-3,800 MPa
Durability: Enhanced performance in acidic environments
Applications: Chemical processing equipment, storage tanks for acidic substances, and applications requiring both electrical and chemical resistance.
Impact on Composites: ECR-Glass provides a balanced combination of electrical properties and chemical resistance, making it versatile for applications
exposed to both electrical and chemical stresses.
R-Glass (Resistance Glass)
Similar to S-Glass but with modified composition for enhanced mechanical properties.
Key Properties:
Tensile Strength: 4,400 MPa
Elastic Modulus: 86 GPa
Temperature Resistance: Improved performance at elevated temperatures
Mechanical Performance: Enhanced stiffness and strength
Applications: Aerospace structures, high-performance pressure vessels, and applications requiring high strength and temperature resistance.
Impact on Composites: R-Glass enhances the mechanical strength, stiffness, and temperature resistance of composites, making them suitable for high-stress, high-temperature applications.
How Glass Fiber Properties Influence Composite Performance
Fiber Length and Orientation
The length and orientation of glass fibers significantly impact the mechanical properties of the resulting composite:
Short Fibers (Chopped Strands):
Easier processing and molding
More isotropic properties (similar in all directions)
Lower overall strength compared to continuous fibers
Recycled Content Integration: Incorporating recycled glass into new fibers
Bio-Based Sizing Agents: Replacing petroleum-derived compounds with sustainable alternatives
Selecting the Right Glass Fiber: Advanses Laboratory Selection Methodology
At Advanses Laboratory, we've developed a proprietary selection methodology for glass fiber reinforcements based on hundreds of case studies and thousands of test specimens. Our materials engineering team recommends a systematic approach considering:
Performance Requirements: Our laboratory can quantify precise strength, stiffness, impact resistance, and fatigue performance parameters through standardized testing protocols. We maintain a comprehensive database of performance criteria for all common glass fiber types that enables precise material selection.
Environmental Conditions: Our environmental exposure testing chambers can simulate accelerated temperature cycling, chemical exposure, moisture infiltration, and UV degradation to verify material performance. Advanses Laboratory has developed predictive models for long-term durability based on these accelerated aging protocols.
Processing Methods: Our process engineering team evaluates manufacturing compatibility through simulation and pilot-scale trials. We've documented processing parameters for all major manufacturing methods including pultrusion, filament winding, RTM, vacuum infusion, and compression molding.
Cost Constraints: Our materials economists provide detailed cost-benefit analysis including production volume scenarios and lifecycle cost evaluations to optimize material selection within budget parameters.
Regulatory Compliance: Our compliance specialists maintain current documentation on industry standards and certification requirements across aerospace, automotive, construction, and consumer products sectors to ensure all material selections meet applicable regulations.
Contact our materials selection team at [email protected] for a customized glass fiber recommendation based on your specific application requirements.
Conclusion: Advanses Insights
Based on our extensive laboratory testing and field implementation experience at Advanses, we can confidently state that glass fibers remain a cornerstone of modern composite materials. Our data confirms they offer an exceptional balance of performance, versatility, and cost-effectiveness that is difficult to match with alternative reinforcement materials.
Our research division continues to monitor manufacturing technology advancements, and we're actively involved in developing next-generation glass fiber composite applications across industries, from everyday consumer products to cutting-edge aerospace technologies. At Advanses Laboratory, we maintain a comprehensive database of material performance characteristics to help our clients select the optimal fiber type for their specific application requirements.
The future of glass fiber technology is promising, with our advanced materials research team focused on enhancing performance, improving sustainability, and expanding the boundaries of what's possible with these remarkable reinforcement materials. Our laboratory is currently engaged in several research initiatives aimed at developing novel sizing chemistries and fiber surface treatments to further improve composite performance.
FAQs About Glass Fibers in Composites: Questions and Answers
Q: Can glass fiber composites be recycled? A: Through our sustainability research at Advanses Laboratory, we've verified that several recycling methods exist for glass fiber composites, including mechanical grinding, pyrolysis, and solvolysis. Our testing shows that recycling processes typically result in 20-30% shorter fibers with 15-25% reduced mechanical properties. We're currently researching improved recycling methods to better preserve fiber integrity.
Q: How do glass fibers compare to natural fibers in composites? A: Our comparative testing at Advanses confirms that glass fibers generally offer 3-5 times higher strength, significantly better moisture resistance (85% less moisture absorption), and more consistent properties than natural fibers. However, our sustainability research shows natural fibers provide advantages of 30-40% lower density, complete biodegradability, and approximately 45% reduced carbon footprint.
Q: What is the typical lifespan of glass fiber composites? A: Advanses Laboratory has conducted accelerated aging tests equivalent to decades of environmental exposure. Our data indicates that with proper design and protection from environmental degradation, glass fiber composites can maintain 80-90% of their structural integrity for 25-50+ years, depending on the application and exposure conditions. We offer specialized testing for specific environmental conditions upon request.
Q: Can glass fiber composites be used in high-temperature applications? A: Our thermal analysis testing at Advanses shows standard glass fibers typically maintain 90% of their room temperature properties up to 200-250°C. For higher temperatures, our materials scientists recommend specialized glass compositions or alternative reinforcements like ceramic fibers. We provide customized high-temperature material selection guidance for challenging applications.
Q: Are glass fiber composites electrically conductive? A: Our electrical characterization laboratory has confirmed glass fibers are excellent electrical insulators with resistivity values typically exceeding 10^14 ohm-cm. For applications requiring electrical conductivity, our compounding specialists can incorporate additives like carbon black (0.5-5% loading), metallic particles, or carbon nanotubes (0.1-1% loading) into the composite formulation to achieve specific conductivity requirements.
For more information about our glass fiber testing capabilities or to discuss your specific composite application needs, contact Advanses Laboratory at [email protected].
Non-linear Viscoelastic Dynamic Properties of Polymer, Rubber and Elastomer Materials
Static testing of materials as per ASTM D412, ASTM D638, ASTM D624 etc can be categorized as slow speed tests or static tests. The difference between a static test and dynamic test is not only simply based on the speed of the test but also on other test variables em- ployed like forcing functions, displacement amplitudes, and strain cycles. The difference is also in the nature of the information we back out from the tests. When related to poly- mers and elastomers, the information from a conventional test is usually related to quality control aspect of the material or the product, while from dynamic tests we back out data regarding the functional performance of the material and the product.
Tires are subjected to high cyclical deformations when vehicles are running on the road. When exposed to harsh road conditions, the service lifetime of the tires is jeopardized by many factors, such as the wear of the tread, the heat generated by friction, rubber aging, and others. As a result, tires usually have composite layer structures made of carbon-filled rubber, nylon cords, and steel wires, etc. In particular, the composition of rubber at different layers of the tire architecture is optimized to provide different functional properties. The desired functionality of the different tire layers is achieved by the strategical design of specific viscoelastic properties in the different layers. Zones of high loss modulus material will absorb energy differently than zones of low loss modulus. The development of tires utilizing dynamic characterization allows one to develop tires for smoother and safer rides in different weather conditions.
Figure Locations of Different Materials in a Tire Design
The dynamic properties are also related to tire performance like rolling resistance, wet traction, dry traction, winter performance and wear. Evaluation of viscoelastic properties of different layers of the tire by DMA tests is necessary and essential to predict the dynamic performance. The complex modulus and mechanical behavior of the tire are mapped across the cross section of the tire comprising of the different materials. A DMA frequency sweep
test is performed on the tire sample to investigate the effect of the cyclic stress/strain fre- quency on the complex modulus and dynamic modulus of the tire, which represents the viscoelastic properties of the tire rotating at different speeds. Significant work on effects of dynamic properties on tire performance has been carried out by Ed Terrill et al. at Akron Rubber Development Laboratory, Inc.
Non-linear Viscoelastic Tire Simulation Using FEA
Non-linear Viscoelastic tire simulation is carried out using Abaqus to predict the hysteresis losses, temperature distribution and rolling resistance of a tire. The simulation includes several steps like (a) FE tire model generation, (b) Material parameter identification, (c) Material modeling and (d) Tire Rolling Simulation. The energy dissipation and rolling re- sistance are evaluated by using dynamic mechanical properties like storage and loss modu- lus, tan delta etc. The heat dissipation energy is calculated by taking the product of elastic strain energy and the loss tangent of materials. Computation of tire rolling is further carried out. The total energy loss per one tire revolution is calculated by;
Ψdiss = ∑ i2πΨiTanδi, (.27)
i=1
where Ψ is the elastic strain energy,
Ψdiss is the dissipated energy in one full rotation of the tire, and
Tanδi, is the damping coefficient.
The temperature prediction in a rolling tire shown in Fig (2) is calculated from the loss modulus and the strain in the element at that location. With the change in the deformation pattern, the strains are also modified in the algorithm to predict change in the temperature distribution in the different tire regions.
ASTM D5992 covers the methods and process available for determining the dynamic prop- erties of vulcanized natural rubber and synthetic rubber compounds and components. The standard covers the sample shape and size requirements, the test methods, and the pro- cedures to generate the test results data and carry out further subsequent analysis. The methods described are primarily useful over the range of temperatures from cryogenic to 200◦C and for frequencies from 0.01 to 100 Hz, as not all instruments and methods will accommodate the entire ranges possible for material behavior.
Figures(.43and.44) show the results from a frequency sweep test on five (5) different elastomer compounds. Results of Storage modulus and Tan delta are plotted.
Figure .43: Plot of Storage Modulus Vs Frequency from a Frequency Sweep Test
The frequency sweep tests have been carried out by applying a pre-compression of 10 % and subsequently a displacement amplitude of 1 % has been applied in the positive and negative directions. Apart from tests on cylindrical and square block samples ASTM D5992 recommends the dual lap shear test specimen in rectangular, square and cylindri- cal shape specimens. Figure (.45) shows the double lap shear shapes recommended in the standard.
Figure .44: Plot of Tan delta Vs Frequency from a Frequency Sweep Test
Dynamic Properties of Polymer Materials and their Measurements
Polymer materials in their basic form exhibit a range of characteristics and behavior from elastic solid to a viscous liquid. These behavior and properties depend on the temperature, frequency and time scale at which the material or the engineering component is analyzed.
The viscous liquid polymer is defined as by having no definite shape and flow deformation under the effect of applied load is irreversible. Elastic materials such as steels and aluminium deform instantaneously under the application of load and return to the original
state upon the removal of load, provided the applied load is within the yield or plastic limits of the material. An elastic solid polymer is characterized by having a definite shape that deforms under external forces, storing this deformation energy and giving it back upon
the removal of applied load. Material behavior which combines both viscous liquid and solid like features is termed as Viscoelasticity. These viscoelastic materials exhibit a time dependent behavior where the applied load does not cause an instantaneous deformation,
but there is a time lag between the application of load and the resulting deformation. We also observe that in polymeric materials the resultant deformation also depends upon the speed of the applied load.
Characterization of dynamic properties play an important part in comparing mechanical properties of different polymers for quality, failure analysis and new material qualification. Figures 1.4 and 1.5 show the responses of purely elastic, purely viscous and of a viscoelastic material. In the case of purely elastic, the stress and the strain (force and resultant deformation) are in perfect sync with each other, resulting in a phase angle of 0. For a purely viscous response the input and resultant deformation are out of phase by 90o. For a
viscoleastic material the phase angle lies between 0 and 90 degree. Generally the measurements of viscoelastic materials are represented as a complex modulus E* to capture both viscous and elastic behavior of the material. The stress is the sum of an in-phase response and out-of-phase responses.
The so x Cosdelta term is in phase with the strain, while the term so x Sindelta is out of phase with the applied strain. The modulus E’ is in phase with strain while, E” is out of phase with the strain. The E’ is termed as storage modulus, and E” is termed as the loss modulus.
E’ = s0 x cosdelta
E” = s0 x sindelta