Verifications and Validations in Finite Element Analysis (FEA)

1.1 Introduction

The finite element method (FEM) is a numerical method used to solve a mathematical model of a given structure or system, which are very complex and for which analytical solution techniques are generally not possible, the solution can be found using the finite element method. The finite element method can thus be said to be a variational formulation method using the principle of minimum potential energy where the unknown quantities of interests are approximated by continuous piecewise polynomial functions. These quantities of interest can be different according to the chosen system, as the finite element method can be and is used in various different fields such as structural mechanics, fluid mechanics, accoustics, electromagnetics, etc. In the field of structural mechanics the primary field of interest is the displacements and stresses in the system.

It is important to understand that FEM only gives an approximate solution of the prob- lem and is a numerical approach to get the real result of the variational formulation of partial differential equations. A finite element based numerical approach gives itself to a number of assumptions and uncertainties related to domain discretizations, mathematical shape functions, solution procedures, etc. The widespread use of FEM as a primary tool has led to a product engineering lifecycle where each step from ideation, design development, to product optimization is done virtually and in some cases to the absence of even prototype testing.

This fully virtual product development and analysis methodology leads to a situation where a misinterpreted approximation or error in applying a load condition may be car- ried out through out the engineering lifecycle leading to a situation where the errors get cumulative at each stage leading to disastrous results. Errors and uncertainties in the ap- plication of finite element method (FEM) can come from the following main sources, 1) Errors that come from the inherent assumptions in the Finite element theory and 2) Errors and uncertainties that get built into the system when the physics we are seeking to model get transferred to the computational model. A common list of these kind of errors and uncertainties are as mentioned below;

  • Errors and uncertainties from the solver.
    • Level of mesh refinement and the choice of element type.
    • Averaging and calculation of stresses and strains from the primary solution variables.
    • Uncertainty in recreating the geometrical domain on a computer.
    • Approximations and uncertainties in the loading and boundary conditions of the model.
    • Errors coming from chosing the right solver types for problems, e.g. Solvers for eigen value problems.

The long list of error sources and uncertainties in the procedure makes it desirable that a framework of rules and criteria are developed by the application of which we can make sure that the finite element method performs within the required parameters of accuracy, reliability and repeatability. These framework of rules serve as verification and validation procedures by which we can consistently gauge the accuracy of our models, and sources of errors and uncertainties be clearly identified and progressively improved to achieve greater accuracy in the solutions. Verifications and Validations are required in each and every development and problem solving FEA project to provide the confidence that the compu- tational model developed performs within the required parameters. The solutions provided by the model are sufficiently accurate and the model solves the intended problem it was developed for.

Verification procedure includes checking the design, the software code and also investigate if the computational model accurately represents the physical system. Validation is more of a dynamic procedure and determines if the computational simulation agrees with the physical phenomenon, it examines the difference between the numerical simulation and the experimental results. Verification provides information whether the computational model is solved correctly and accurately, while validation provides evidence regarding the extent to which the mathematical model accurately correlates to experimental tests.

In addition to complicated discretization functions, partial differential equations repre- senting physical systema, CFD and FEA both use complicated matrices and PDE solution algorithms to solve physical systems. This makes it imperative to carry out verification and validation activities separately and incrementally during the model building to ensure reliable processes. In order to avoid spurious results and data contamination giving out false signals, it is important that the verification process is carried out before the valida- tion assessment. If the verification process fails the the model building process should be discontinued further until the verification is established. If the verification process suc- ceeds, the validation process can be carried further for comparison with field service and experimental tests.

1.2 Brief History of Standards and Guidelines for Verifi- cations and Validations

Finite element analysis found widespread use with the release of NASA Structural Anal- ysis Code in its various versions and flavous. The early adopters for FEA came from the aerospace and nuclear engineering background. The first guidelines for verification and validation were issued by the American Nuclear Society in 1987 as Guidelines for the Ver- ification and Validation of Scientific and Engineering Computer Programs for the Nuclear Industry.

The first book on the subject was written by Dr. Patrick Roache in 1998 titled Verification and Validation in Computational Science and Engineering, an update of the book appeared in 2009.

In 1998 the Computational Fluid Dynamics Committee on Standards at the American Institute of Aeronautics and Astronautics released the first standards document Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. The US Depeartment of Defense through Defense Modeling and Simulation Office releaseed the DoD Modeling and Simulation, Verification, Validation, and Accreditation Document in 2003.

The American Society of Mechanical Engineers (ASME) V and V Standards Commit- tee released the Guide for Verification and Validation in Computational Solid Mechanics (ASME V and V-10-2006).

In 2008 the National Aeronautics and Space Administration Standard for Models and Simulations for the first time developed a set of guidelines that provided a numerical score for verification and validation efforts.

American Society of Mechanical Engineers V and V Standards Committee V and V-20 in 2016 provided an updated Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer .

1.3 Verifications and Validations :- Process and Procedures

Figure(1.1) shows a typical product design cycle in a fast-paced industrial product de- velopment group. The product interacts with the environment in terms of applied loads, boundary conditions and ambient atmosphere. These factors form the inputs into the com- putational model building process. The computational model provides us with predictions and solutions of what would happen to the product under different service conditions.

It is important to note that going from the physical world to generating a computational model involves an iterative process where all the assumptions, approximations and their effects on the the quality of the computational model are iterated upon to generate the most optimum computational model for representing the physical world.

Figure 1.1: Variation on the Sargent Circle Showing the Verification and Validation Procedures in a Typical Fast Paced Design Group

The validation process between the computational model and the physical world also involves an iterative process, where experiments with values of loads and boundary con- ditions are solved and the solution is compared to output from the physical world. The computational model is refined based upon the feedbacks obtained during the procedure.

The circular shapes of the process representation emphasizes that computational mod- eling and in particular verification and validation procedures are iterative in nature and require a continual effort to optimize them.

The blue, red and green colored areas in Figure(1.3) highlight the iterative validation and verification activities in the process. The standards and industrial guidelines clearly mention the distinctive nature of code and solution verifications and validations at different levels. The green highlighted region falls in the domain of the laboratory performing the experiments, it is equally important that the testing laboratory understands both the process and procedure of verification and validation perfectly.

Code verification seeks to ensure that there are no programming mistakes or bugs and that the software provides the accuracy in terms of the implementation of the numerical al- gorithms or construction of the solver. Comparing the issue of code verification and calcu- lation verification of softwares, the main point of difference is that calculation verification

Figure 1.2: Verification and Validation Process

involves quantifying the discretization error in a numerical simulation. Code verification is rather upstream in the process and is done by comparing numerical results with analytical solutions.

Figure 1.3: Guidance for Verification and Validation as per ASME 10.1 Standard

1.4 Guidelines for Verifications and Validations

The first step is the verification of the code or software to confirm that the software is work- ing as it was intended to do. The idea behind code verification is to identify and remove any bugs that might have been generated while implementing the numerical algorithms or because of any programming errors. Code verification is primarily a responsibility of the code developer and softwares like Abaqus, LS-Dyna etc., provide example problems man- uals, benchmark manuals to show the verifications of the procedures and algorithms they have implemented.

Next step of calculation verification is carried out to quantify the error in a computer simulation due to factors like mesh discretization, improper convergence criteria, approxi- mation in material properties and model generations. Calculation verification provides with an estimation of the error in the solution because of the mentioned factors. Experience has shown us that insufficient mesh discretization is the primary culprit and largest contributor to errors in calculation verification.

Validation processes for material models, elements, and numerical algorithms are gen- erally part of FEA and CFD software help manuals. However, when it comes to establishing the validity of the computational model that one is seeking to solve, the validation procedure has to be developed by the analyst or the engineering group.

The following validation guidelines were developed at Sandia National Labs[Oberkampf et al.] by experimentalists working on wind tunnel programs, however these are applicable to all problems from computational mechanics.

Guideline 1: The validation experiment should be jointly designed by the FEA group and the experimental engineers. The experiments should ideally be designed so that the validation domain falls inside the application domain.

Guideline 2: The designed experiment should involve the full physics of the system, including the loading and boundary conditions.

Guideline 3: The solutions of the experiments and from the computational model should be totally independent of each other.

Guideline 4: The experiments and the validation process should start from the system level solution to the component level.

Guideline 5: Care should be taken that operator bias or process bias does not contami- nate the solution or the validation process.

1.5 Verification & Validation in FEA

1.5.1 Verification Process of an FEA Model

In the case of automotive product development problems, verification of components like silent blocks and bushings, torque rod bushes, spherical bearings etc., can be carried. Fig- ure(1.4) shows the rubber-metal bonded component for which calculations have been carried out. Hill[11], Horton[12] and have shown that under radial loads the stiffness of the bushing can be given by,

Figure 1.4: Geometry Dimensions of the Silent Bushing

converted PNM file

Figure 1.5: Geometry of the Silent Bushing

and G= Shear Modulus = 0.117e0.034xHs, Hs = Hardness of the material. Replacing the geometrical values from Figure(1.4),

Krs = 8170.23N/mm,                                                  (1.3)

for a 55 durometer natural rubber compound.  The finite element model for the bushing

is shown in Figure(1.9) and the stiffness from the FEA comes to 8844.45 N/mm. The verification and validation quite often recommends that a difference of less than 10% for a comparison of solutions is a sound basis for a converged value.

For FEA with non-linear materials and non-linear geometrical conditions, there are multiple steps that one has to carry out to ensure that the material models and the boundary conditions provide reliable solutions.

  • Unit Element Test: The unit element test as shown in in Figure(1.7) shows a unit cube element. The material properties are input and output stress-strain plots are compared to the inputs. This provides a first order validation of whether the material
converted PNM file

Figure 1.6: Deformed Shape of the Silent Bushing

properties are good enough to provide sensible outputs. The analyst him/her self can carry out this validation procedure.

  • Experimental Characterization Test: FEA is now carried out on a characterization test such as a tension test or a compression test. This provides a checkpoint of whether the original input material data can be backed out from the FEA. This is a moderately difficult test as shown in Figure(1.8). The reasons for the difficulties are because of unquantified properties like friction and non-exact boundary conditions.
  • Comparison to Full Scale Experiments: In these validation steps, the parts and com- ponent products are loaded up on a testing rig and service loads and boundary con- ditions are applied. The FEA results are compared to these experiments. This step provides the most robust validation results as the procedure validates the finite ele- ment model as well as the loading state and boundary conditions. Figure(1.9) shows torque rod bushing and the validation procedure carried out in a multi-step analysis.

Experience shows that it is best to go linearly in the validation procedure from step 1 through 3, as it progressively refines one’s material model, loading, boundary conditions. Directly jumping to step 3 to complete the validation process faster adds upto more time with errors remaining unresolved, and these errors go on to have a cumulative effect on the quality of the solutions.

Figure 1.7: Unit Cube Single Element Test

Figure 1.8: FEA of Compression Test

1.5.2 Validation Process of an FEA Model

Figure(1.7) shows the experimental test setup for validation of the bushing model. Radial loading is chosen to be the primary deformation mode and load vs. displacement results are compared. The verification process earlier carried out established the veracity of the FEA model and the current validation analysis applies the loading in multiple Kilonewtons. Results show a close match between the experimental and FEA results. Figures(1.10) and

Figure 1.9: Experimental Testing and Validation FEA for the Silent Bushing

(1.11) show the validation setup and solutions for a tire model and engine mount. The complexity of a tire simulation is due to the nature of the tire geometry, and the presence of multiple rubber compounds, fabric and steel belts. This makes it imperative to establish the validity of the simulations.

Figure 1.10: Experimental Testing and Validation FEA for a Tire Model

Figure 1.11: Experimental Testing and Validation FEA for a Passenger Car Engine Mount

1.6 Summary

An attempt was made in the article to provide information on the verification and validation processes in computational solid mechanics.  We  went through the history of adoption   of verification and validation processes and their integration in computational mechanics processes and tools. Starting from 1987 when the first guidelines were issued in a specific field of application, today we are at a stage where the processes have been standardized and all major industries have found their path of adoption.

Verification and validations are now an integral part of computational mechanics processes to increase integrity and reliability of the solutions. Verification is done primarily at the software level and is aimed at evaluating whether the code has the capability to offer the correct solution to the problem, while validation establishes the accuracy of the solution. ASME, Nuclear Society and NAFEMS are trying to make the process more standardized, and purpose driven.

Uncertainty quantification has not included in this current review, the next update of this article will include steps for uncertainty quantification in the analysis.

1.7 References

  1. American Nuclear Society, Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for the Nuclear Industry 1987.
  2. Roache, P.J, American Nuclear Society, Verification and Validation in Computational Science and Engineering, Hermosa Publishing, 1998.
  3. American Institute of Aeronautics and Astronautics, AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (G-077-1998), 1998.
  4. U.S. Department of Defense, DoD Modeling and Simulation (M-S) Verification, Validation, and Accreditation, Defense Modeling and Simulation Office, Washington DC.
  5. American Society of Mechanical Engineers, Guide for Verification and Validation in Computational Solid Mechanics, 2006.
  6. Thacker, B. H., Doebling S. W., Anderson M. C., Pepin J. E., Rodrigues E. A., Concepts of Model Verification and Validation, Los Alamos National Laboratory, 2004.
  7. Standard for Models And Simulations, National Aeronautics and Space Administration, NASA-STD-7009, 2008.
  8. Oberkampf, W.L. and Roy, C.J., Verification and Validation in Computational Simulation, Cambridge University Press, 2009.
  9. Austrell, P. E., Olsson, A. K. and Jonsson, M. 2001, A Method to analyse the non- Linear dynamic behaviour of rubber components using standard FE codes, Paper no 44, Conference on Fluid and Solid Mechanics.
  10. Austrell, P. E., Modeling of Elasticity and Damping for Filled Elastomers,Lund University.
  11. ABAQUS Inc., ABAQUS: Theory and Reference Manuals, ABAQUS Inc., RI, 02.
  12. Hill, J. M. Radical deflections of rubber bush mountings of finite lengths. Int. J. Eng. Sci., 1975, 13.
  13. Horton, J. M., Gover, M. J. C. and Tupholme, G. E. Stiffness of rubber bush mountings subjected to radial loading. Rubber Chem. Tech., 2000, 73.
  14. Lindley, P. B. Engineering design with natural rubber , The Malaysian Rubber Producers’ Research Association, Brickendonbury, UK., 1992.

Deformation Mechanisms in Elastomers – Rubbers

Hysteresis:
The loading and unloading stress–strain graph for rubber in Figure(1.9) shows that the behaviour as a load is removed is not the same as that when the load is being increased. This is called hysteresis and the curves are said to make a hysteresis loop.On a graph of stress against strain: the area between the curve and the strain axis represents the energy per unit
volume. This is the energy absorbed when a material is being stretched and the energy that is released when the force is removed. Rubber absorbs more energy during loading than it releases in unloading. The difference is represented by the area of the hysteresis loop, shown shaded in the stress–strain graph. The effect of hysteresis in rubber is to transfer energy to its molecules, resulting in heating. Goodrich Flexometer Heat Buildup ASTM
D 623 is an empirical method for comparing cured rubber compounds in terms of their hysteretic behavior.


Mullin’s and Payne’s Effect
Similar to the Payne effect under small deformations is the Mullins effect that is observed under large deformations. The Payne effect is a particular feature of the stress-strain behaviour of rubber, especially rubber compounds containing fillers such as carbon black. It is named after the
British rubber scientist A. R. Payne, who made extensive studies of the effect (e.g. Payne 1962). The effect is sometimes also known as the Fletcher-Gent effect, after the authors of the first study of the phenomenon (Fletcher & Gent 1953). The effect is observed under cyclic loading conditions with small strain amplitudes, and is manifest as a dependence of the viscoelastic storage modulus on the amplitude of the applied strain. Above approximately 0.1 % strain amplitude, the storage modulus decreases rapidly with increasing amplitude. At sufficiently large strain amplitudes (roughly 20%), the storage modulus approaches a lower bound. In that region where the storage modulus decreases the loss modulus shows a maximum. The Payne effect depends on the filler content of the material and vanishes for unfilled elastomers. Physically, the Payne effect can be attributed to deformation-induced changes in the material’s microstructure, i.e. to breakage and recovery of weak physical bonds linking adjacent filler clusters. Since the Payne effect is essential for the frequency and amplitude-dependent dynamic stiffness and damping behaviour of rubber bushings, automotive tyres and other products, constitutive models to represent it have been developed in the past (e.g. Lion et al. 2003).
The Mullins effect is a particular aspect of the mechanical response in filled rubbers in which the stress-strain curve depends on the maximum loading previously encountered. The phenomenon, named for rubber scientist Leonard Mullins, working at the Tun Abdul Razak Research Centre in Hertford, U.K., can be idealized for many purposes as an instantaneous
and irreversible softening of the stress-strain curve that occurs whenever the load increases beyond its prior all-time maximum value. At times, when the load is less than a prior maximum, nonlinear elastic behavior prevails. Although the term ”Mullins effect” is commonly applied to stress softening in filled rubbers.

Permanent Set:
Permanent set is the amount of deformation in a rubber after the distorting load has been removed. It can be defined as a permanent deformation that takes place in the material lower than at the yield point of the material. Permanent set is a complex phenomenon. Parameters that affect permanent set can be broadly described into two categories; 1) Service performance related factors 2) Material compound parameters. Service performance parameters include variables like mode of deformation, strain rates, temperature of application etc. While material compound parameters include variables like type of elastomer, its recipe ingredients, degree and amount of cross-linking etc. An O-ring or a Seal under energized conditions must maintain good contact force throughout the functional life of the products. Contact force is generated between the mating surfaces when one of the mating surfaces deflects and compresses the seal surface. In order for the sealing to remain effective the contact surfaces must return to the undeformed original position when the contacting force is removed. Under these conditions the deflection of the sealing element must be fully recoverable and so hyperelastic by nature. If there is any unrecoverable strain in the material the performance of the seal is diminished and leak would occur from between the surfaces. The key to designing a good sealing element is that the good contact force is as high as possible while at the same time ensuring that the deflection remains
hyperelastic in nature. This requires the use of a material with a good combination of force at a desired deformation characteristic. The relationship between strain and stress is described by the material’s stress-strain curve.

Figure 1: Uniaxial Tension Test Results

Figure 1 shows typical stress-strain curves from a polymer thermoplastic material and thermoset rubber material. Both the materials
have plastic strain properties where when the material is stretched beyond the elastic limit there is some permanent deformation and the material does not fully return to its original undeformed condition. The plastic strain, is the area between the loading and unloading line in both the graphs. In automotive application this permanent plastic strain is observed
more easily in under the hood components located near the engine compartments because of the presence of high temperature conditions. If a polymer part such as intake manifold is stressed to a certain and held for a period of time then some of the elastic strain converts to plastic strain resulting in observations of permanent deformation in the component. There are two physical mechanisms by which the amount of plastic strain increases over time, 1) Stress relaxation and 2) Creep. Creep is an increase in plastic strain under constant force, while in the case of Stress relaxation, it is a steady decrease in force under constant applied deformation or strain. Creep is a serious issue in plastic housings or snap fit components.
In Most Finite Element Analysis softwares stress relaxation and creep can both be modeled with the help of experimental test data

FEA Modeling of Rubber and Elastomer Materials

The application of computational mechanics analysis techniques to elastomers presents unique challenges in modeling the following characteristics:

– The load-deflection behaviour of an elastomer is markedly non-linear.

– The recoverable strains can be as high 400 % making it imperative to use the large

deflection theory.

– The stress-strain characteristics are highly dependent on temperature and rate effects are pronounced.

– Elastomers are nearly incompressible.

– Viscoelastic effects are significant.

The ability to model the special elastomer characteristics requires the use of sophisticated material models and non-linear Finite element analysis tools that are different in scope and theory than those used for metal analysis. Elastomers also call for superior analysis methodologies as elastomers are generally located in a system comprising of metal-elastomer parts giving rise to contact-impact and complex boundary conditions. The presence of these conditions require a judicious use of the available element technology and solution techniques.

FEA Support Testing

Most commercial FEA software packages use a curve-fitting procedure to generate the material constants for the selected material model. The input to the curve-fitting procedure is the stress-strain or stress-stretch data from the following physical tests:

1  Uniaxial tension test

2  Uniaxial compression test OR Equibiaxial tension test

3  Planar shear test

4  Volumetric compression test

A minimum of one test data is necessary, however greater the amount of test data, better the quality of the material constants and the resulting simulation. Testing should be carried out for the deformation modes the elastomer part may experience during its service life.

Curve-Fitting

The stress-strain data from the FEA support tests is used in generating the material constants using a curve-fitting procedure. The constants are obtained by comparing the stress-strain results obtained from the material model to the stress-strain data from experimental tests. Iterative procedure using least-squares fit method is used to obtain the constants, which reduces the relative error between the predicted and experimental values. The linear least squares fit method is used for material models that are linear in their coefficients e.g Neo-Hookean, Mooney-Rivlin, Yeoh etc. For material models that are nonlinear in the coefficient relations e.g. Ogden etc, a nonlinear least squares method is used.

Verification and Validation

In the FEA of elastomeric components it is necessary to carry out checks and verification steps through out the analysis. The verification of the material model and geometry can be carried out in three steps,

_ Initially a single element test can be carried out to study the suitability of the chosen material model.

_ FE analysis of a tension or compression support test can be carried out to study the material characteristics.

_ Based upon the feedback from the first two steps, a verification of the FEA model

can be carried out by applying the main deformation mode on the actual component

on any suitable testing machine and verifying the results computationally.

Figure 1: Single Element Test

Figure(1) shows the single element test for an elastomeric element, a displacement

boundary condition is applied on a face, while constraining the movement of the opposite face. Plots A and B show the deformed and undeformed plots for the single element. The load vs. displacement values are then compared to the data obtained from the experimental tests to judge the accuracy of the hyperelastic material model used.

Figure 2: Verification using an FEA Support Test

Figure (2) shows the verification procedure carrying out using an FEA support test.

Figure shows an axisymmetric model of the compression button. Similar to the single

element test, the load-displacement values from the Finite element analysis are compared to the experimental results to check for validity and accuracy. It is possible that the results may match up very well for the single element test but may be off for the FEA support test verification by a margin. Plot C shows the specimen in a testing jig. Plot D and E show the undeformed and deformed shape of the specimen.

Figure(3) shows the verification procedure that can be carried out to verify the FEA

Model as well as the used material model. The procedure also validates the boundary conditions if the main deformation mode is simulated on an testing machine and results verified computationally. Plot F shows a bushing on a testing jig, plots G and H show the FEA model and load vs. displacement results compared to the experimental results. It is generally observed that verification procedures work very well for plane strain and axisymmetric cases and the use of 3-D modeling in the present procedure provides a more rigorous verification methodology.

Figure 3: FEA Model Verification using an Actual Part

AdvanSES provides Hyperelastic, Viscoelastic Material Characterization Testing for CAE & FEA softwares.

Unaged and Aged Properties and FEA Material Constants for all types of Polymers and Composites. Mooney-Rivlin, Ogden, Arruda-Boyce, Blatz-ko, Yeoh, Polynomials etc.

Dynamic Properties of Polymer, Rubber and Elastomer Materials

Non-linear Viscoelastic Dynamic Properties of Polymer, Rubber and Elastomer Materials

Static testing of materials as per ASTM D412, ASTM D638, ASTM D624 etc can be categorized as slow speed tests or static tests. The difference between a static test and dynamic test is not only simply based on the speed of the test but also on other test variables em- ployed like forcing functions, displacement amplitudes, and strain cycles. The difference is also in the nature of the information we back out from the tests. When related to poly- mers and elastomers, the information from a conventional test is usually related to quality control aspect of the material or the product, while from dynamic tests we back out data regarding the functional performance of the material and the product.

Tires are subjected to high cyclical deformations when vehicles are running on the road. When exposed to harsh road conditions, the service lifetime of the tires is jeopardized by many factors, such as the wear of the tread, the heat generated by friction, rubber aging, and others. As a result, tires usually have composite layer structures made of carbon-filled rubber, nylon cords, and steel wires, etc. In particular, the composition of rubber at different layers of the tire architecture is optimized to provide different functional properties. The desired functionality of the different tire layers is achieved by the strategical design of specific viscoelastic properties in the different layers. Zones of high loss modulus material will absorb energy differently than zones of low loss modulus. The development of tires utilizing dynamic characterization allows one to develop tires for smoother and safer rides in different weather conditions.

Figure  Locations of Different Materials in a Tire Design

The dynamic properties are also related to tire performance like rolling resistance, wet traction, dry traction, winter performance and wear. Evaluation of viscoelastic properties of different layers of the tire by DMA tests is necessary and essential to predict the dynamic performance. The complex modulus and mechanical behavior of the tire are mapped across the cross section of the tire comprising of the different materials. A DMA frequency sweep

test is performed on the tire sample to investigate the effect of the cyclic stress/strain fre- quency on the complex modulus and dynamic modulus of the tire, which represents the viscoelastic properties of the tire rotating at different speeds. Significant work on effects of dynamic properties on tire performance has been carried out by Ed Terrill et al. at Akron Rubber Development Laboratory, Inc.

Non-linear Viscoelastic Tire Simulation Using FEA

Non-linear Viscoelastic tire simulation is carried out using Abaqus to predict the hysteresis losses, temperature distribution and rolling resistance of a tire. The simulation includes several steps like (a) FE tire model generation, (b) Material parameter identification, (c) Material modeling and (d) Tire Rolling Simulation. The energy dissipation and rolling re- sistance are evaluated by using dynamic mechanical properties like storage and loss modu- lus, tan delta etc. The heat dissipation energy is calculated by taking the product of elastic strain energy and the loss tangent of materials. Computation of tire rolling is further carried out. The total energy loss per one tire revolution is calculated by;

Ψdiss = ∑ i2πΨiTanδi, (.27)
i=1
where Ψ is the elastic strain energy,
Ψdiss is the dissipated energy in one full rotation of the tire, and
Tanδi, is the damping coefficient.

The temperature prediction in a rolling tire shown in Fig (2) is calculated from the loss modulus and the strain in the element at that location. With the change in the deformation pattern, the strains are also modified in the algorithm to predict change in the temperature distribution in the different tire regions.